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Abstract—Computer-aided diagnosis (CAD) is an attractive 

topic in Alzheimer’s disease (AD) research. Many algorithms are 
based on a relatively large training dataset. However, small 
hospitals are usually unable to collect sufficient training samples 
for robust classification. Although data sharing is expanding in 
scientific research, it is unclear whether a model based on one 
dataset is well suited for other data sources. Using a small dataset 
from a local hospital and a large shared dataset from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI), we 
conducted a heterogeneity analysis and found that different 
functional magnetic resonance imaging (fMRI) data sources show 
different sample distributions in feature space. In addition, we 
proposed an effective knowledge transfer method to diminish the 
disparity among different datasets and improve the classification 
accuracy on datasets with insufficient training samples. The 
accuracy increased by approximately 20% compared with that of 
a model based only on the original small dataset. The results 
demonstrated that the proposed approach is a novel and effective 
method for CAD in hospitals with only small training datasets. It 
solved the challenge of limited sample size in detection of AD, 
which is a common issue but lack of adequate attention. 
Furthermore, the paper sheds new light on effective use of 
multi-source data for neurological disease diagnosis. 
 

Index Terms—Computer-aided diagnosis, Small dataset, 
Domain adaptation, Alzheimer’s disease, rs-fMRI, Machine 
learning 

I. INTRODUCTION 

HE problems associated with the aging population are 
becoming increasingly serious as people live longer and 
fertility rates decline in most countries. Furthermore, 

because a greater proportion of individuals are elderly, more 
people are at high risk of developing dementia. Currently, 
approximately 47 million people worldwide live with dementia, 
and this number is predicted to increase to more than 131 
million by 2050 [1]. Alzheimer's disease (AD) is the most 
common form of dementia diagnosed in elderly people and 
significantly reduces their quality of life. An accurate and early 
diagnosis is essential for timely treatment and risk reduction. 
Over the past decade, several imaging modalities have been 
used in AD diagnosis, including diffusion tensor imaging (DTI) 
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[2]–[6], structural magnetic resonance imaging (MRI) [7]–[12] 
and positron emission tomography (PET) [13]–[16]. Among 
these modalities, functional MRI (fMRI) plays an important 
role in monitoring brain activity and exploring the functional 
connectivity among different brain regions; therefore, fMRI is a 
promising methodology for the investigation and detection of 
brain disease [17], [18].  

Researches about computer-aided diagnosis (CAD) systems 
which use machine-learning algorithms to diagnose or predict 
diseases have sprung up in recent years, especially for AD 
discrimination from fMRI scans [19]–[23]. However, certain 
problems remain in the development and application of CAD 
systems. Large datasets are highly important for AD research 
studies and CAD. Data sharing is a possible method for solving 
this problem. Some large research institutions and associations 
have begun to share their data, like the Alzheimer's Disease 
Neuroimaging Initiative (ADNI). However, even if large 
institutions are willing to share their data with smaller 
organizations, it is unclear whether the shared large dataset can 
be used to improve classification performance on the local 
small dataset. Many studies investigating AD discrimination 
using fMRI relied on a single data source with limited AD 
samples, including the above referenced researches. We found 
inconsistent or even contradictory conclusions in similar 
studies performing brain network analyses in AD. For example, 
Supekar et al. found that the global connectivity in patients with 
AD was higher than that in the normal controls (NCs), while 
Zhao et al. drew the opposite conclusion [24], [25]. In addition, 
Zhao et al. found that the average normalized characteristic 
path length in the patients with AD was greater than that in the 
NCs, while Sanz-Arigita et al. obtained the opposite result [25], 
[26]. We consider several factors that may have contributed to 
this phenomenon. First, different data sources may lead to 
dispersed sample distributions due to a mismatch in the age, 
race, and lifestyle of the subjects. Second, the machines and 
imaging parameters used for the data collection differed in the 
studies mentioned above. Third, the data preprocessing steps 
and related parameters differed. The impacts of the first and 
second factors are inevitable in research studies. Even in a 
single database, like ADNI, there are many institutions 
contributed to it with different imaging parameters (from 1.5T 
and 3.0T scanners for example). The research of Teipel et al. 
suggest that multi-site acquisition limits the use of rs-fMRI in 
AD diagnosis [27]. We assume that different fMRI data sources 
have different sample distributions, as illustrated in [28], and 
this may cause confusion. Thus, large shared dataset could not 
be directly mixed with a small dataset to obtain sufficient 
training samples for calibrating a classifier. In this situation, 
how can we improve the accuracy of classification using small 
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datasets in local hospitals? 
Transfer learning has become a “hot topic” for solving 

classification problems using multi-source data in the research 
field of computer vision [29]–[31]. Some researchers are aware 
of this development and have been exploring the application of 
this method to biomedical analysis. Van Opbroek et al. used 
transfer learning in supervised image segmentation of the brain 
using multi-site data and obtained good results [32]. Conjeti et 
al. proposed a supervised domain adaptation (a sort of transfer 
learning conditions) framework that combined domain 
alignment, feature normalization, and leaf posterior 
reweighting to realize the in vivo characterization of 
atherosclerotic tissues in the presence of a distribution shift 
between the training and testing data and demonstrated that 
their approach is a superior alternative [33]. Wachinger and 
Reuter (integrated instance weighting into an elastic-net 
multinomial regression to mitigate overfitting and correct 
variations among large multi-center datasets and showed that 
when some samples from the target dataset were included in the 
training set, the classification accuracy was improved 
compared with that when the training solely relied on the target 
dataset [34]. Goetz et al. (2016) combined reweighting 
observations and random forests to correct sampling selection 
errors introduced by sparse annotations and reduced the 
labeling time by a factor of more than 70 without sacrificing 
accuracy [35]. As demonstrated by the above-mentioned 
studies, domain adaptation is a promising approach in medical 
signal processing. Although great progress has been achieved 
in transfer learning, to the best of our knowledge, no studies 
investigating a target dataset with a very limited number of 
samples. Aforementioned researches are all with relatively 
large sample size in both source dataset and target dataset. Once 
the dataset size is too small, it will renders these developed 
methods unsuitable for solving the problem of classifier 
calibration and may greatly affect the practical application of 
transfer learning techniques. Thus, it’s highly significant to 
effectively use large datasets from different data sources for 
classifier calibration on limited sample size, particularly for 
CAD systems in small hospitals and organizations.  

In this study, we first explored the heterogeneity of AD 
datasets from different data sources and confirmed our 
hypothesis that different fMRI data sources have different 
sample distributions in the feature space. Then, a simple and 
efficient domain adaptation method was used to diminish the 
disparity in the sample distribution between the large shared 
dataset and the small current dataset. Finally, a common 
machine-learning model was built for AD discrimination based 
on the data after adaptation. Using this procedure, we achieved 
a significant increase in the accuracy of classification using 
only the small datasets. More specifically, the classification 
accuracy was more than 20% greater than that using classifiers 
trained with naïve combinations of samples from different data 
sources and approximately 30% greater than that using 
classifiers trained only with the small target dataset. Wachinger 
and Reuter used general linear model integrated with instance 
weighting in domain adaptation of AD classification and 
obtained improved performance [34]. The same method has 
been applied in this study for comparison. However, we did not 
find improvement in the classification accuracy compared with 
that of using naïve combinations of samples. It indicates that 

the performance of aforementioned studies will be degraded 
more or less in such a condition of very limited training samples. 
The results demonstrated that the solution proposed in this 
paper is an effective method for overcoming the challenges of 
CAD using small sample sets and paves a new way for 
individual hospitals and organizations to build specific 
auxiliary diagnosis applications.  

II. METHODS 

We introduced a simple novel domain adaptation method 
designed to diminish the disparity in the sample distributions 
among datasets from different sources. The framework of our 
method is described in Fig. 1. First, we extracted weighted 
connections between different functional regions as original 
features through brain network modeling. Second, a feature 
selection step was executed before the domain adaptation 
because the dimensions of the original features were too large. 
The selected features from the two different data sources were 
distributed in two separate feature spaces. Then, we performed 
a modified subspace alignment to align the sample points from 
the two separate feature spaces into the same subspace. Finally, 
the aligned samples in one subspace were as an integrated 
dataset for the classifier training and testing.  

A. Modified Subspace Alignment Method 

The domain adaptation method proposed in this paper was 
adapted from Fernando et al. [36]. They proposed a subspace 
alignment method for visual recognition that yielded good 
results in an object recognition task, and this algorithm is 
efficient due to its intrinsic simplicity. Here, we modified this 
method to make it suitable for a small dataset and fMRI data. 

Given two datasets from different domains, i.e., source 
domain DS containing m samples and target domain DT 
containing n samples, [x1, …, xm] = XS ∈ DS and [x1, …, xn] = XT 

∈	DT. The subspace alignment mapped the data into subspaces 
and learned transfer matrix M, which aligned one subspace with 
the other. Assuming that the feature dimension of the samples is 
dm, first, we can obtain d eigenvectors for each domain by 
composing their subspaces ௌܸ

ௗൈௗ  and ்ܸௗൈௗ  using singular 
value decomposition (SVD). then each data point was projected 
into its respective subspace by multiplying ௌܸ

ௗൈௗ or ்ܸௗൈௗ as 
appropriate. The function of mapping the feature vectors from 
one domain to the subspace of the other domain is learned by 
minimizing the following Bregman matrix divergence: 

 
ሻܯሺܨ ൌ	∥ ௌܸܯ െ ்ܸ ∥ி

ଶ                     (1) 

∗ܯ ൌ  ሻሻ                    (2)ܯሺܨெሺ݊݅݉݃ݎܽ
 
where ∥⋅∥ிଶ is the Frobenius norm. To obtain the optimal ܯ∗, 
equation 1 can be rewritten as follows: 
 
ሻܯሺܨ ൌ	∥ ௌܸ

ᇱ
ௌܸܯ െ ௌܸ

ᇱ்ܸ ∥ிଶ 	ൌ	∥ ܯ െ ௌܸ
ᇱ்ܸ ∥ிଶ               (3) 

 
In this equation, we can obtain the optimal ܯ∗ as ܯ∗ ൌ ௌܸ

ᇱ்ܸ .  
Once the feature vectors are mapped, all the data are aligned 

into a single subspace. Finally, all projected feature vectors 
belonging to a certain subspace can be used for the training and 
prediction. The entire procedure is presented in Algorithm 1. 
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Using the subspace alignment method, the performance is 
related to the sole hyperparameter d. Parameter d corresponds 
to the dimension of the subspaces that has the limitation of 
being smaller than the number of samples or the feature 
dimension dm. According to consistency theorem on similarity 
function of source data and target data, we can use theoretical 
result to determine the upper bound of d. Given a fixed 

deviation γ		0,  with the inequation ቛVS
dMVTd

'
‐VSn

d MnVTn
d 'ቛ

≤γ,  a subset of ݀ ∈ ሼ݀|1,… , ݀௫ሽ  can be obtained. That 
means as long as we select a subspace dimension d satisfying 
the condition ݀  ݀௫ , the solution mapping procedure is 
stable and not over-fitting. In this study, since the range of d is 
not wide, we have tried all the possible value of d and got the 
optimal one. 

Compared with the method in [36], we replaced the principal 
component analysis (PCA) with SVD, which has several 
advantages. First, the value of the features used in this situation 
ranged from zero to one, and many features in the feature 
vectors had a value close to zero. Under this circumstance, 
calculating the covariance matrix in a PCA may lose numbers 
that are very close to zero, while using SVD can obtain more 
stable results. Second, the dimension of the subspace cannot be 
larger than the number of samples in the smaller dataset or 
feature dimension dm if using a PCA. In fact, the number of 

samples is very limited and far smaller than dm in our situation, 
but SVD is free of the constraint of insufficient samples, and we 
used right singular vectors as eigenvectors. Finally, performing 
a PCA requires centered and standardized data, which is not 
necessary in SVD. 

B. Discriminant Analysis Classifier 

A discriminant analysis classifier is a nonparametric 
probabilistic model used to classify a new observation based on 
the following three quantities: posterior probability, prior 
probability, and cost. This model assumes that the data in each 
class have a multivariate normal distribution. The model uses 
the same covariance matrix for the liner discriminant analysis 
and individual covariance of each class for the quadratic 
analysis. This approach has been successfully applied for the 
detection of AD in [37].  

Assuming there are K classes and given observation x, the 
predicted classification is the minimization of the expected 
classification cost as follows:  

 
ොݕ ൌ arg 	min

௬ୀଵ,…,
∑ ܲሺ݇|ݔሻܥሺݕ|݇ሻ
ୀଵ                 (4) 

 
where ݕො is the predicted classification, ܲሺ݇|ݔሻ is the posterior 
probability of class K for observation x, and ܥሺݕ|݇ሻ is the cost 
of classifying an observation as y when its true class is k. 
Generally, the cost is 0 if the classification is accurate and 1 
otherwise. A thorough presentation of discriminant analysis can 
be found in [38]. We have tried both type of discriminant in the 
study, and better performance achieved with linear discriminant. 
In this paper, all the experiments and results were based on 
linear discriminant. 

III. EXPERIMENTAL SETUP 

A. Data collection and preprocessing 

There were two datasets used in this study. Data source I, the 
local small dataset (target dataset), was collected in Tongji 
Hospital at Wuhan. It contained 26 subjects in total, including 
12 patients diagnosed with AD according to the NINCDS 
-ADRDA criteria and 14 healthy controls [39]. Each subject 
had one fMRI scan only. These 26 subjects are all available 
samples in Tongji Hospital. Data source II, the large shared 
dataset (source dataset), contained 86 subjects. Data source II 
used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative database 

 
Fig. 1.  Framework of the classification using the modified subspace alignment
method. 
  

Algorithm 1. Subspace alignment using SVD 
1. Performing SVD on XS and XT via ௌܺ ൌ ௌܷΣௌ ௌܸ

ᇱ and ்ܺ ൌ
்ܷΣ்்ܸᇱ , respectively.  
2. Determining dimension d of the subspace by keeping the
first d columns of VS and VT yields the mapping matrices

ௌܸ
ௗൈௗ and ்ܸௗൈௗ.  

3. Mapping the feature vectors of all samples to the subspace

of the source domain as follows: ௌܵ
ൈௗ ൌ ௌܺ

ൈௗ
ௌܸ
ௗൈௗ and

ௌܶ
ൈௗ ൌ ்ܺ

ൈௗ்ܸௗൈௗ்ܸᇱௗൈௗ ௌܸ
ௗൈௗ. 

4. Training a classifier with ௌܵ
ൈௗ and then using this classifier

to disambiguate ௌܶ
ൈௗ. 
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(adni.loni.usc.edu). The ADNI was launched in 2003 as a 
public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been 
to test whether serial MRI, PET, other biological markers, and 
clinical and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment (MCI) 
and early AD. For up-to-date information, see 
www.adni-info.org. Most subjects from data source II had 
undergone fMRI scan more than once; there were 117 scans of 
34 AD patients and 175 scans of 52 healthy controls (excluding 
scans with abnormal head motion and different data acquisition 
setups) in total. Each scan was regarded as an individual sample 
to make the shared dataset as large as possible. To be noted, the 
scans which belong to one subject were regarded as a whole and 
either all distributed to training set or testing set. It won’t 
happen where some scans from a subject were in training data 
while some other scans from the same subject were in testing 
set. Therefore, it’s a feasible way to enlarge the training set. 

The study protocol was approved by the ethics committee at 
Tongji medical college of Huazhong University of Science and 
Technology, and written informed consents were obtained from 
all subjects from data source I. Demographic information and 
other characteristics of the two datasets are shown in Table I. 

We collected the Tongji dataset on a GE signa HDxt 3.0 
Tesla MRI scanner. The specific parameters are as follows: 
TR/TE = 2000/30 ms, flip angle = 90°, imaging matrix = 64×64, 
voxel size = 3.0 mm × 3.0 mm × 3.0 mm, number of slices =33, 
and each series has 240 volumes. fMRI data in the ADNI 
database was acquired on a 3-T Philips MRI scanner with the 
following parameters: TR/TE = 3000/30 ms, flip angle = 80°, 
imaging matrix = 64 × 64, voxel size = 3.31 mm × 3.31 mm × 
3.31 mm, number of slices =48, and each series has 140 
volumes.  

Post-processing of all fMRI images was performed using 
SPM8 (http://www.fil.ion.ucl.ac.uk/spm), REST and DPARSF 
[40], [41]. After removing the first ten volumes of each series 
for signal equilibration, slice timing and realigning for head 
motion correction were carried out. Then the functional images 
were normalized into the Montreal Neurological Institute (MNI) 
space using echo-planar imaging (EPI) template. Samples with 
head motion larger than 2.5mm were excluded. The resulting 
images were spatially smoothed using a Gaussian kernel with 6 
mm × 6 mm × 6 mm FWHM, and REST was used to remove 
the linear trends of time courses. Finally, temporal band-pass 
filtering within the interval of 0.01–0.08 Hz was applied to the 
time courses of each voxel, and nuisance covariates, including 
six head motion parameters, global mean signal, white matter 
signal, and cerebrospinal fluid sign were regressed out. Time 
series of 90 regions of interests (ROIs) for each sample were 
extracted by warping the automated anatomical labeling (AAL) 

atlas for processed brain images for further analysis [42]. 

B. Feature extraction 

We calculated the pairwise Pearson correlation coefficients 
between any two time-series of 90 ROIs in each scan, resulting 
in a 4005-dimensional feature vector for one scan describing 
the correlation coefficient matrix. Then the Kendall’s tau 
correlation coefficients were used for feature selection 
procedure [43]. The Kendall’s tau coefficients has been proved 
to be effective for feature selection in neuroimaging studies 
about CAD [19], [44]. Since the number of samples is limited 
(292 from the ADNI dataset and 26 from the Tongji dataset), 
we conducted the experiments with 10 to 200 selected features 
at an interval of 10 to evaluate the generalizability of the 
method. In the experiments of adaptation, we first performed 
the feature selection procedure in large ADNI dataset. Then, the 
consequential selection was applied to the small Tongji dataset. 
That means we obtained a subset of features in ADNI dataset 
after feature selection procedure and the same subset of features 
was chosen for Tongji dataset.  

C. Experimental procedure 

To evaluate the effectiveness of our method, the following 
sets of AD discrimination experiments were performed:  
(i). Only Tongji: Classification task only with local Tongji 
dataset. During this task, leave-one-out cross-validation 
(LOOCV) strategy was applied with 26 samples of Tongji 
dataset. More specifically, each time 25 samples were used for 
feature selection and training the discriminant analysis 
classifier, and the remaining one was used for testing;  
(ii). Naïve Combination: ADNI dataset was added to training 
set in Experiment (i). More specifically, each time 25 samples 
from Tongji dataset plus all the ADNI samples were used for 
feature selection and training the discriminant analysis 
classifier, and the remaining one in Tongji dataset was used for 
testing; 
(iii). With Adaptation: As illustrated in Fig. 3. At first, feature 
selection was performed in ADNI dataset and a subset of 
features was obtained  in this procedure, then the same subset of 
features was chosen for each sample for Tongji dataset. After 
that, Tongji data (target domain) was projected to its subspace 
and mapped to the subspace of ADNI data (source domain). 
ADNI data was projected to its own subspace. With this, ADNI 
data and Tongji data were aligned in the same subspace. Finally, 
the ADNI and 25 out of 26 Tongji samples in ADNI subspace 
were used for training the discriminant analysis classifier, and 
the remaining one for testing. The final step is similar to 
Experiment (ii), where the difference is that the data in (iii) was 
after adaptation. 
(iv). Instance Weighting: In addition, a general linear model 
integrated with instance weighting for AD classification was 
built for comparison, which is the method performed in [34]. 
Tongji dataset was split into two part, training part and testing 
part. For each sample in training part, a weight was evaluated 
according to probability of these samples in ADNI domain. 
Then these samples along with ADNI samples were fed into a 
general linear model with log-likelihood function and 
elastic-net multinomial regression. All the fed samples in 
log-likelihood function were weighted. The weights of the 
training part from Tongji dataset were as evaluated at beginning, 

TABLE I 
DEMOGRAPHIC INFORMATION AND OTHER SAMPLE CHARACTERISTICS 

Data sources Group AD NC 

ADNI  
Female/male 56/61 98/77 
Age  74.6±7.5 75.5±6.1
MMSE 21.3±3.5 28.9±1.5 

Tongji  
Female/male 6/6 8/6 
Age  65.7±11.9 65.7±7.5 
MMSE 16.7±3.0 28.5±1.2 
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and the ADNI samples got a constant weight equal to 1. Finally, 
the trained general linear model  was used to classify the testing 
part of Tongji dataset. The splitting procedure was repeated for 
50 times as we randomly sampled the training set each time. 
Due to the limited number of samples in Tongji domain, we 
added fifty percent of the Tongji samples to the training set 
instead of ten to thirty percent in [34]. 

The accuracy, sensitivity, specificity and area under the 
curve (AUC) in each experiment were calculated. All 
experiments were performed with Matlab R2016a.  

IV. RESULTS 

The mixture of two datasets are heterogeneous. Fig. 2 
illustrates the probability distributions of mini-mental state 
examination (MMSE) scores and ages in both datasets. These 
distributions were estimated using a kernel density estimation. 
In addition, a 4005-dimension feature per scan was extracted, 
and the t-SNE method (developed from Stochastic Neighbor 
Embedding) was used to decrease the feature dimension and 
enable the visualization of high dimensional data [45]. The 
result is shown in Fig. 3(a). Obviously, the sample points from 
the Tongji dataset cluster mainly in the upper margin of the 
ADNI sample points before adaptation. It indicates that the 
different fMRI data sources show different sample distributions 
in the feature space. Consistency in feature distribution of 
samples is of crucial importance for achieving good 
classification performance in pattern recognition. Therefore, it 
is necessary for CAD that uses fMRI data from multiple 
sources to eliminate the inconsistency in the sample 
distribution across different data sources. The sample 
distribution of the two datasets was also visualized in a 
2-dimension feature space after adapting the Tongji data to the 
domain of ADNI dataset. As shown in Fig. 3(b), sample points 
from the Tongji dataset no longer lay in the margins of the 
ADNI data points but shifted to a distribution consistent with 
that of ADNI dataset. The modified subspace alignment 
method bridged the gap of domain differences to a certain 
extent. 

The classification task only with the local small dataset from 
Tongji data source did not perform well, as shown in Fig. 4. Its 
accuracy was slightly greater than 50%, which is almost like 
random guesses. It’s difficult to construct a robust model for 
auxiliary diagnosis of AD in a sample set as small as Tongji 
dataset. When we used the large shared dataset from ADNI and 
mixed with Tongji dataset, the performance of the classifier 
significantly increased, reaching an accuracy of 60%. Thus, 
enlarging the size of training set indeed improved the 
performance of a classifier. However, this improvement was 

inadequate compared with the classification results obtained in 
the adaptation experiment, in which the accuracy was greater 
than 80%. The unsatisfactory accuracy before adaptation 
indicates that it is not possible to obtain reliable classification 
results by simply adding different data sources to obtain a 
larger training set. 

The specific performance indicators are summarized in 
Table II. The accuracy after the adaptation increased by nearly 
thirty percent compared with that in the classification 
experiment using only Tongji dataset. However, the result of 
the general linear model integrated with instance weighting is 
not promising, for its performance was not improved compared 
with that of naïve combining the two datasets to train the 
classifier. Thus, ordinary domain adaptation methods may not 
be well suited for the situation in which the target samples are 
very insufficient. More considerations should be taken on 
solving this challenge. 

The number of selected features influences the performance 
of the AD classification. As shown in Fig. 4, when we selected 
a few features for the classification, the classifier performed 
poorly. The accuracy of the classification improved as the 
number of selected features increased. However, the classifier 
performance stopped improving once a certain number of 
features (depending on the sample size) was reached. Too few 
features are insufficient for classification, while too many 
features may be redundant. This finding is consistent with 
previous studies [46]. We selected the features by ranking the 
Kendall’s tau correlation coefficients. Table III lists the 

 
(a) MMSE             (b) Age 

Fig. 2.  The probability distributions of the MMSE scores and ages in the two
datasets. (a) The probability distributions of the MMSE scores. (b) The
probability distributions of ages. 
  

(a) Before adaptation      (b) After adaptation 
Fig. 3.  Visualization of the distribution of the sample points from the two
separate data sources. (a) The distribution before adaptation. (b) The
distribution after adaptation with modified subspace alignment. 
 

Fig. 4.  Accuracy in classification experiments with different subset features
when d = 25. Black line: accuracy for general linear model integrated with
instance weighting. The missing accuracy in beginning of red line is due to the
limitation that the feature dimension should be great than subspace dimension
d. 
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features with a |τ| score ranking in the top ten in Experiment (iii). 
The top 50 features selected from the ADNI dataset are labeled 
in Fig. 5, which was generated with Brain-Net Viewer [47]. 

Subspace dimension d plays an important role in the domain 
adaptation. The accuracy increased as subspace dimension d 
increased as shown in Fig. 6. We have compared the SVD 
subspace alignment with original method in all values of d with 
90 selected features. The performance of SVD method is as 
good as that of original one in most cases, and sometimes it’s 
even better. The optimal d is 25 in our experiment. Due to the 
limitation of sample size, we have tried all the possible values. 
In other applications, the parameter d can be tuned according to 
consistency theorem described in modified subspace alignment 
method.  

V. DISCUSSION 

CAD systems used for AD classification based on fMRI data 
have become a major research topic in recent years. However, it 
is difficult for small hospitals and research organizations to 
collect sufficient samples for accurate classification. Many 
small hospitals and research organizations frequently encounter 
this difficulty. Data sharing is a possible choice for solving this 
problem. In this study, because the fMRI dataset from Tongji 
Hospital was too small, the classifier trained with limited 
samples performed poorly.  

The ADNI dataset was introduced to enlarge the training 
dataset and improve the classification accuracy. Most studies 
investigating AD identification conducted their experiments 

using a single dataset [19]–[21], [23], [37], [46], [48]–[51]; thus, 
their models usually performed well for samples selected from 
the same specific data source. However, it is unclear whether a 
model built on a particular dataset is well suited for different 
data sources. The model trained with the ADNI dataset did not 
perform well on the Tongji dataset. Although a naïve 
augmentation with ADNI data improved the classification 
accuracy, the classification performance remained poor for 
further practical application. We think the problem laid in the 
difference between the two data sources where the samples 
were obtained. By performing a heterogeneity analysis of the 
different data sources, we found that the feature distribution of 
the samples from Tongji Medical College differed from that of 
the ADNI data, which confirmed our assumption. This 
discrepancy may relate to many factors. Obviously, the 
probability distribution of age and MMSE score in Tongji 
dataset is different from that in ADNI dataset, as shown in Fig. 
2 and Table I. Furthermore, the equipment and acquisition 
parameters are different between the two datasets. These 
factors result in heterogeneity in data from different sources 
and the failure of naïve combination of multi-site data.  

Regarding multi-source data utilization, transfer learning is a 
potential way in medical signal analysis. Heimann et al. applied 
instance weighting to the image fusion of trans-esophageal 
echography (TEE) and X-ray fluoroscopy for ultrasound 
transducer localization [52]. Schlegl et al. used data from 
multiple sites via a semi-supervised learning approach to 

TABLE II 
BEST CLASSIFICATION RESULTS OF ALL EXPERIMENTS* 

Experiment 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
AUC 
(%) 

Only Tongji 49.0 42 57 32 
Naive combination 61.5 58 64 63 
Instance weighting 55.3±2.9 62±2.5 55±2.7 60±3.0
With adaptation 84.6 92 79 80

* The best results were obtained when the subspace dimension d = 25. The 
+/- STD in Instance weighting was for the reason the experiment was repeated 
for 50 times as we randomly sampled the training set each time. In other 
classification experiments the LOOCV strategy was applied.  

 

 
Fig. 5.  Top 50 selected features from the ADNI dataset in Experiment (iii). The 
size of the node is proportional to the number of significant connections with
which the node (ROI) is involved. The thickness of the edge is proportional to
the value of the |τ| score of the features. 
 

TABLE III 
FEATURES WITH |τ| SCORE RANKING IN THE TOP TEN 

Feature(connection between regions) |τ| 

Hippocampus_R↔Frontal_Sup_L 0.254 
Hippocampus_R↔Frontal_Mid_L 0.249 
Temporal_Inf_R↔Heschl_R 0.238 
Occipital_Mid_L↔Precentral_L 0.231
Cuneus_L↔Cingulum_Mid_R 0.230 
Postcentral_R↔Frontal_Sup_L 0.228 
Temporal_Inf_L↔Occipital_Inf_L 0.226 
Postcentral_R↔Frontal_Mid_L 0.223 
Temporal_Inf_L↔Fusiform_L 0.223 
Paracentral_Lobule_L↔Occipital_Mid_L 0.219 

 

Fig. 6.  Influence of subspace dimension d on the classification accuracy when
the number of subset features was 90. The red line denotes the accuracy of the
classification with SVD (modified subspace alignment method), and the blue
line denotes the accuracy of the classification with PCA (original subspace
alignment method).  
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improve lung tissue classification [53]. Van Opbroek et al. 
showed that transfer learning outperformed common 
supervised learning approaches in MRI brain-segmentation 
tasks using multi-site data [32]. Domain adaptation is a 
promising approach in transfer learning. In this study, we used 
a simple domain adaptation method to diminish the disparity in 
the feature distribution between the large and small datasets for 
AD detection. Our experiments demonstrated that adapting the 
Tongji dataset to the ADNI domain using this method yielded a 
dramatic improvement in the classification. The accuracy was 
nearly 20% greater than that using the naïve combination of 
samples and approximately 30% greater than that using the 
small dataset. Our domain adaptation method diminishes the 
disparity in the feature space between samples from different 
data sources and effectively improves the classification 
accuracy when sample size is extremity limited. This study 
provides a novel method for small hospitals and research 
organizations to develop CAD systems for neurological 
diseases. 

The modified subspace alignment method introduced in this 
paper is a relatively easy algorithm compared with other 
domain adaptation methods, such as feature augmentation 
based approaches, feature transformation based approaches, 
dictionary based approaches, and other methods [54]–[58]. 
This method can be conveniently adapted for multiple domains 
as long as we map the other domains to a single source domain. 
Information loss is a limitation of the subspace alignment 
method because this method employs SVD to produce the base 
vectors of the subspaces. Only hyperparameter d slightly 
influenced the experimental results. Hyperparameter d denotes 
how many dimensions there are in a subspace, and d is directly 
concerned with information loss. Hence, the chart of d is in 
accordance with our expectations. The subspace alignment 
method has been successfully applied in other medical image 
recognition applications, demonstrating its simple form and 
extensive application [33].  

The general liner model integrated with instance weighting 
yielded disappointing results. Its overall performance was not 
better than that of the naïve combination method. We think the 
insufficient samples in target dataset is the major reason. The 
instance weighing estimates the probability distributions in the 
source dataset and target dataset and then evaluates the 
probability of the target samples under the source distribution. 
The limited number of samples in the target dataset complicates 
the precise estimation of the target distribution; therefore, it 
brought large error when evaluating the weights. However, the 
modified subspace alignment method uses all data in the target 
dataset regardless of whether their labels are available and 
adapts the target samples to the subspace of the source domain, 
thereby decreasing the disparity between the two datasets. Our 
method is well suited for classification task on a very small 
dataset. 

In this study, the feature selection strategy is based on 
Kendall’s tau correlation coefficients. The top ten selected 
features and the regions involved are listed in Table IV. Among 
these regions, the hippocampus is ranked first and has been 
demonstrated to be highly related to AD [18], [59], [60]. The 
connectivity between frontal areas and other regions, which 
was chosen as a classification feature, has been associated with 
AD in other studies [19], [61]. Additionally, most other listed 

regions are consistent with several previous studies [19], [60], 
[62]–[65]. The consistency of our results with those obtained in 
other studies suggests that the features selected with Kendall’s 
tau correlation coefficients are reliable for classification.We 
only considered functional connectivity features because these 
features are widely used in studies investigating AD 
identification based on fMRI [19], [37], [46], [66]. Other types 
of biomarkers or features can be included in this method to 
achieve better classification performance.  

There are some limitations to our study. We only 
demonstrated that different fMRI data sources show different 
distributions in the feature space. However, how factors, such 
as devices, the setup of the technical parameters, etc., influence 
the sample distribution in the feature space remains unclear. On 
the other hand, AD studies progress slowly in local hospitals, 
and it is difficult for us to obtain additional samples for analysis 
and comparison. Meanwhile, physicians in these developing 
regions do not have as many rich experiences as those doctors 
in large medical centers, thereby increasing the need of CAD 
assistance. For CAD systems on AD classification, more 
studies on early AD detection are now trending. MCI is an 
important early stage of Alzheimer’s disease, and 
distinguishing MCI from normal aging is more significant and 
difficult than detecting AD. There are many excellent papers 
about MCI classification, and we have got a lot inspiration from 
these studies [67]–[69]. To identity MCI population is one of 
the important task in our future works. As the develop of deep 
learning, using deep neural network in auxiliary diagnosis to 
automatic extract features and conduct transfer learning is 
promising. We are looking forward to building robust deep 
learning architecture in the future. 

VI. CONCLUSION 

In this paper, we demonstrated that the AD classification task 
using a small dataset can be better solved using the modified 
subspace alignment method. This method can effectively 
improve the accuracy of the classification in small sample sets. 
Researchers can use this method to relieve the challenge of 
extremely limited sample size, particularly when collecting 
neuroimaging data is difficult and computer-aided diagnoses 
with limited samples are required. Our work may also assist 
researchers to make better use of shared data and promote the 
exchange of collected data. 
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